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similarity between ‘Barke’ and the NAM families ranged 
from 78.6 to 83.1  %, confirming the backcrossing step 
during population development. To explore its usefulness, 
a screen for leaf rust (Puccinia hordei) seedling resistance 
was conducted. Resistance QTLs were mapped to six 
barley chromosomes, applying a mixed model genome-
wide association study. In total, four leaf rust QTLs 
were detected across HEB-5 and four QTLs within fam-
ily HEB-F23. Favorable exotic QTL alleles reduced leaf 
rust symptoms on two chromosomes by 33.3 and 36.2 %, 
respectively. The located QTLs may represent new resist-
ance loci or correspond to new alleles of known resist-
ance genes. We conclude that the exploratory population 
HEB-5 can be applied to mapping and utilizing exotic 
QTL alleles of agronomic importance. The NAM concept 
will foster the evaluation of the genetic diversity, which is 
present in our primary barley gene pool.

Introduction

Cultivated barley (Hordeum vulgare ssp. vulgare) is an 
important crop species, mainly used for animal feeding and 
beer production. Due to this fact, barley is used in breeding 
programs for more than 100 years. However, in most crops, 
also in barley, a loss of allelic diversity has been observed 
during domestication and the onset of modern breed-
ing (Tanksley and McCouch 1997). Thus, barley breeders 
currently try to re-introduce favorable alleles using dif-
ferent breeding strategies. Additionally, barley is a model 
species for crop genetic research due to its comparatively 
easy to manage diploid genome. Recently, the barley gene 
space was sequenced (The International Barley Genome 
Sequencing Consortium 2012), laying the foundation for 
an accelerated avenue to gene discovery and elucidation of 
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gene function. However, ‘classical’ genetic tools as QTL 
mapping still provide effective preconditions for genetic 
mapping and map-based cloning. QTL mapping usually 
is applied in (i) biparental populations derived from cross-
ing two genetically diverse parents (Collard et al. 2005) or 
(ii) genome-wide association studies (Mackay et al. 2009; 
Waugh et al. 2009; Tondelli et al. 2013). In the latter case, 
multiple unrelated genotypes with unknown kinship are the 
basis for detecting genomic regions where alleles are asso-
ciated with the control of quantitative traits.

Nested association mapping (NAM) represents a further 
refined QTL mapping approach (Yu et  al. 2008). In this 
case, multiple donor parents are crossed with one recipient 
parent resulting in a final NAM population, which carries 
multiple alleles at each investigated locus. The advantage 
of the NAM approach relies on the combination of link-
age analysis with high-resolution (HR) association map-
ping (Yu et  al. 2008). Yu and Buckler (2006) were the 
first to propose the implementation of the NAM approach 
for maize. The maize NAM population consists of 5,000 
recombinant inbred lines (RILs) within 25 NAM families 
with 200 lines per family (Buckler et al. 2009). It was dem-
onstrated that large differences in flowering time are not 
caused by a few genes with large effects, but by the cumu-
lative effects of numerous QTLs (McMullen et  al. 2009; 
Larsson et  al. 2013). Furthermore, the maize NAM lines 
were investigated in regard to pathogen resistances (Kump 
et al. 2011; Poland et al. 2011), morphological traits (Tian 
et  al. 2011), kernel composition (Cook et  al. 2012), and 
stalk strength (Peiffer et  al. 2013). Additionally, QTLs 
involved in hydroxamic acid synthesis were mapped for a 
subset of NAM lines (Butrón et al. 2010).

The NAM approach was also applied to sorghum. The 
sorghum NAM population consists of 56 NAM families 
with 30–90 NAM lines per family (Jordan et al. 2011). In 
contrast to the maize NAM population, the sorghum pop-
ulation structure was compromised to better detect QTLs 
across NAM families (Jordan et  al. 2011). Hybrid per-
formance regarding nodal root angle was analyzed and, 
within a subset of seven sorghum NAM families, nodal root 
angle QTLs were located. The detected QTLs confirmed 
already known QTL regions or represented new loci, so 
far unknown to control the investigated traits (Jordan et al. 
2011; Mace et  al. 2012). Additionally, synteny between 
sorghum and maize was detected in regions, where exotic 
flowering time alleles for both crops were detected (Mace 
et  al. 2013). Also computer simulations were conducted 
to underline the power of NAM for QTL detection and to 
allocate optimal parental numbers (Stich et al. 2007, 2010; 
Stich 2009; Li et al. 2011). Stich (2009) compared different 
mating designs for developing maize and Arabidopsis thal-
iana NAM populations based on simulation data. He rec-
ommended creating NAM populations with a large number 

of parents. However, simulations for QTL detection may 
have limitations because they are forced to make assump-
tions about the sharing of QTL among individuals and their 
frequency distributions (Myles et al. 2009).

Leaf rust (LR), caused by the biotrophic fungal patho-
gen Puccinia hordei, is an economically important bar-
ley foliar disease. Currently, at least 21 qualitative (also 
called ‘major’ or ‘race-specific’) resistance genes against 
P. hordei, named Rph1 to Rph21, are known (Golegaonkar 
et al. 2009b; Hickey et al. 2011, 2012; Sandhu et al. 2012). 
All of the LR resistance genes, except of Rph20, are effec-
tive at seedling stage, and some are also expressed dur-
ing adult plant stage (Golegaonkar et  al. 2009b). Rph 
genes were detected on all seven barley chromosomes (cf. 
Chełkowski et  al. 2003; Weerasena et  al. 2004; Sandhu 
et al. 2012).

Pathogen resistance may also be inherited quantita-
tively. The underlying genes are regarded as durable due to 
the assumption that additive minor allelic effects result in 
race-nonspecific, basal resistance (cf. Schweizer and Stein 
2011). Multiple studies were conducted to map QTLs, and 
alleles were associated with leaf rust resistance in different 
genomic regions (e.g., Qi et al. 1998, 1999, 2000; Kicherer 
et  al. 2000; van Berloo et  al. 2001; Backes et  al. 2003; 
Kopahnke et  al. 2004; von Korff et  al. 2005; Kraakman 
et  al. 2006; Marcel et  al. 2007a, b; Schmalenbach et  al. 
2008; Cakir et al. 2011; Castro et al. 2012; González et al. 
2012). The detection of LR resistance QTLs in seedlings 
is usually plant stage dependent (Wang et al. 2010; Castro 
et al. 2012). An advanced QTL approach, the ‘Meta-QTL’ 
approach, was applied by Schweizer and Stein (2011). 
The authors remapped QTLs detected in different popula-
tions for several fungal pathogens including P. hordei and 
detected hot spot regions on all chromosomes of the bar-
ley genome. Also, candidate gene studies (González et al. 
2010; Chen et al. 2011), expression analyses (Millett et al. 
2009; Chen et  al. 2010a, b), and proteomic characteriza-
tion of individual Rph genes (Bernardo et  al. 2012) were 
reported to further understand the genetics of nonhost 
resistance against P. hordei (Jafary et al. 2006, 2008; Mar-
cel et al. 2007a; Zellerhoff et al. 2010).

In the present paper, we report toward the development 
of the first explorative barley NAM population. We pre-
sent data on mapping QTLs in HEB-5 conferring seedling 
resistance against leaf rust as a first application.

Materials and methods

Plant material

To develop the NAM population HEB-5 (‘Halle Exotic 
Barley’), five H. vulgare ssp. spontaneum accessions 
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(Hordeum identity, HIDs) were selected from Badr et  al. 
(2000) in order to represent independent Hsp origins of the 
Fertile Crescent (Table  1). The Hsp donors were crossed 
with the German spring barley (H. vulgare ssp. vulgare) 
cultivar ‘Barke’ (Fig. S1). The resulting F1 plants were 
backcrossed with ‘Barke’ as the female parent. Subse-
quently, 20 BC1 plants per NAM family were selfed once 
to produce the final BC1S1 generation of HEB-5 (Table 1). 
During the development of HEB-5, no artificial selection 
was carried out. For leaf rust testing, the HEB-5 lines were 
bulk propagated once resulting in BC1S1:2 offspring.

SNP genotyping

Genomic DNA extraction was conducted as described in 
Schmalenbach et  al. (2011). Leaf material was collected 
from a pool of at least 10 BC1S1:2 offspring in order to rep-
resent the original BC1S1 HEB-5 line. SNP genotyping of 
the 295 NAM lines, the five donor HIDs, and the recurrent 
parent ‘Barke’ with the barley 1,536 Infinium BOPA1 SNP 
set (Close et al. 2009) was carried out at the Southern Cali-
fornia Genotyping Consortium (SCGC) at the University 
of California, Los Angeles (http://scgc.genetics.ucla.edu/). 
The obtained raw data were transformed to genotype calls 
and subsequently manually supervised to correct for het-
erozygote calls using GenCall software (Illumina, San 
Diego, CA) at the Close lab (University of California, Riv-
erside, CA). Mapping information of the BOPA1 SNPs was 
taken from Muñoz-Amatriaín et al. (2011).

Cultivation of NAM lines and leaf rust resistance test

The 295 NAM lines in BC1S1:2 plus the HID donor parents 
and ‘Barke’ were sown in 150 well trays and, after germi-
nation, vernalized for 4 weeks at 8 °C and 2 further weeks 
at 12 °C in a climate chamber at the experimental station 
of the Martin Luther University of Halle-Wittenberg. After 
vernalization, seedlings were transferred to 1.25-L pots, 
containing the standard plant cultivation substrate ‘ED73’ 
(Einheitserde- und Humuswerke Gebr. Patzer, Sinntal-
Jossa, Germany) and cultivated under controlled glass-
house conditions. The average cultivation temperature was 
19 °C with a minimum temperature of 10 °C at night and a 
maximum temperature of 32 °C during the day. Plants were 
grown under quartz metal halide lamps (Master HPI-T Plus 
400  W, Philips, Amsterdam, The Netherlands) with 10–
30 klx of light for 16 h per day and with automated shad-
ing. Watering, nitrogen, phosphorus and potassium fertili-
zation, and pesticide treatment followed local glasshouse 
cultivation practices.

To test for leaf rust resistance in the HEB-5 population, 
five BC1S1:2 plants per NAM line, ‘Barke,’ and the five 
HIDs were grown in 150-well plates as indicated above. 
The plates were transferred to the Julius Kuehn Institute, 
where screening for leaf rust resistance took place. Individ-
uals of the highly susceptible cultivar ‘Großklappige Win-
tergerste’ were placed surrounding the NAM lines on the 
plates to control for infection success. Before inoculation, 
plants were sprayed with a 0.01 % ‘Tween 20’ suspension 
to support adhesion of uredospores to the leaves. Subse-
quently, freshly propagated uredospores of P. hordei isolate 
‘I-80’ were mixed with white clay (ratio 1:3) and the pow-
der was attached with approximately 0.1 mg of uredospores 
per individual to the first leaf of each NAM line at Zadoks 
GS 11 (Zadoks et  al. 1974). Isolate ‘I-80’ is capable to 
overcome common leaf rust resistance genes in the Euro-
pean barley gene pool, except for Rph7, Rph15, Rph16, 
and RphMBR1012 (König et al. 2012). Kopahnke et al. (2004) 
reported that ‘I-80’ is also avirulent against Rph5, Rph6, 
Rph13, and Rph14. The virulence behavior of ‘I-80’ against 
Rph17–Rph21 is unknown so far. After inoculation, the 
plants were grown at 18  °C and 100  % relative humidity 
in a growth chamber for 24 h. After incubation, the plants 
were cultivated at 20 ± 3 °C with 50–70 % relative humid-
ity in a climate chamber in the glasshouse. Ten days after 
inoculation, the seedlings were screened for LR symptoms 
according to Levine and Cherewick (1952).

Statistical analyses

All statistical analyses were performed with SAS Enter-
prise Guide 4.2 (SAS Institute 2008). Heritability (h2) for 
LR was estimated as h2 =  100 ×  VG/(VG +  Vϵ/r), where 

Table 1   Development of the barley NAM population HEB-5

The origin of the Hsp parents is referenced in Badr et al. (2000) and 
Badr personal communication. HID-069, HID-144, and HID-359 
were exclusively used as female parents, whereas HID-099 and HID-
140 were used both as female and male parents. All F1 plants were 
backcrossed once with ‘Barke’ as the female parent to ensure that the 
final cytoplasm originates from the Hv parent ‘Barke’. Twenty BC1 
plants per family were used to generate 50–71 BC1S1 lines per family 
through one round of selfing

NAM  
family/ 
population

Initial cross Origin of 
HID

No. of F1 
plants

No. of  
BC1 plants

No. of 
NAM 
lines in 
BC1S1

HEB-F06 HID-069  
× ‘Barke’

Turkey 13 20 60

HEB-F08 HID-099  
× ‘Barke’

Syria 14 20 71

HEB-F14 HID-140  
× ‘Barke’

Iraq 24 20 59

HEB-F15 HID-144  
× ‘Barke’

Iran 13 20 55

HEB-F23 HID-359  
× ‘Barke’

Israel 12 20 50

HEB-5 76 100 295

http://scgc.genetics.ucla.edu/
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VG and Vϵ are the variance components genotype (NAM 
line) and experimental error, respectively, with r = 5 repli-
cates per NAM line. Variance components were calculated 
with ‘proc VARCOMP’. Genetic similarity (GS) between 
the NAM lines, ‘Barke,’ and the HIDs were estimated with 
‘proc DISTANCE’ based on simple matching of SNP mark-
ers. A principal component (PCo) analysis based on genetic 
similarities was conducted with ‘proc PRINCOMP’. For 
illustrating genetic similarities, a cluster analysis (‘proc 
CLUSTER’) was carried out. Subsequently, ‘proc GPLOT’ 
and ‘proc TREE’ were applied for graphical presentation of 
the results.

In order to locate QTLs which explain the variation in 
leaf rust reaction, two mixed model analyses of variance 
were conducted. Prior to this, SNPs with a minor allele 
frequency (MAF) <0.05 were excluded from analysis to 
reduce false-positive associations (Tabangin et  al. 2009). 
Also, according to Pillen et  al. (2003), only homozygous 
Hv or Hsp genotypes at a marker locus were included in 
the calculation. This was carried out since repeated self-
ing of heterozygous BC1S1 lines will lead to a mixture 
of homozygous genotypes resulting in a false estimation 
of the true performance of heterozygous NAM lines. For 
mixed model analysis, the LR classes were transformed 
to quantitative scores as shown in Table 2. The first mixed 
model analysis was carried out with ‘proc MIXED’ across 
all five families of population HEB-5:

where µ is the general mean, Fi is the fixed effect across 
the i = 5 NAM families, Lj is the random effect across the 
j = 295 NAM lines, Mk is the fixed effect across the k = 2 
homozygous genotypes, which can be distinguished at the 
SNP locus under investigation, PCo1 and PCo2 are the 
two principle components, used as fixed covariates, which 
explain more than 5 % of the genetic variation between the 

Yijkl = µ + Fi + Lj + Mk + PCo1 + PCo2

+ εijkl [model 1],

NAM lines, and εijkl is the random error effect across the 
l = 5 replicates per NAM line. The principal components 
are included in the model to account for the genetic related-
ness between the NAM lines.

In addition, the 2-factorial mixed model was car-
ried within each NAM family in order to search for QTL 
effects, which are present within single families:

where the remaining parameters are in agreement with 
model 1.

Following the mixed model analysis, a false discovery 
rate (FDR) adjustment was conducted according to Ben-
jamini and Hochberg (1995) with ‘proc MULTTEST,’ to 
account for multiple testing. Marker-trait associations were 
accepted with P(FDR) <0.05. Marker-trait associations 
showing the same effect were interpreted as a single puta-
tive QTL if linked markers were mapped ≤20 cM apart.

Results

Development of the barley NAM population HEB‑5

In the present paper, we report on progress toward the 
development of an explorative barley NAM population 
HEB-5. For this, we crossed five H. vulgare ssp. sponta-
neum accessions (HIDs) with the German elite cultivar 
‘Barke’. In total, 76 F1 seeds were obtained, although the 
number of fertile F1 offspring ranged from 12 to 24 across 
the five NAM families (see Table 1). Subsequently, the F1 
individuals were backcrossed once again with ‘Barke’. Out 
of this set, 20 BC1 individuals for each NAM family were 
chosen randomly for selfing. In total, 295 resulting BC1S1 
plants were randomly selected to define population HEB-5. 
The number of lines per NAM family ranged from 50 to 71 
lines. In order to propagate seeds of the 295 NAM lines, 
one round of bulk propagation was carried out producing at 
least 10 BC1S1:2 seeds per NAM line (Table 1).

SNP genotyping of HEB‑5

In generation BC1S1, HEB-5 lines derived from five 
NAM families were genotyped with the BOPA1 SNP set 
described in Muñoz-Amatriaín et al. (2011). Out of 1,536 
SNPs, 1,211 informative SNPs (excluding 19 unmapped 
SNPs) were used to differentiate the 295 NAM lines. 
The SNP coverage across the seven barley chromosomes 
varied. Between 135 (7H) and 230 (5H), SNPs were 
genotyped per chromosome. An overview describing the 
genome coverage is given in Table S1. Mapped SNPs 
resulted in an average marker distance varying from 0.8 to 
1.2 cM across the seven barley chromosomes. The biggest 

Yjkl = µ + Lj + Mk + PCo1 + PCo2 + εjkl [model 2],

Table 2   Transformation of original leaf rust classes into quantitative 
scores of leaf rust symptoms

a  According to Levine and Cherewick (1952)

Original classa Quantitative score

0cn 1

0–1; 1 2

0–2-; 2– 3

0–2 4

2 5

2+ 6

2–3 7

3; 3–4 8

4 9
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gap between two adjacent SNPs was detected on chromo-
some 4H (11.2 cM).

Frequencies of the three genotype classes HvHv, 
HvHsp, and HspHsp and the two allele classes Hv and 
Hsp, respectively, were calculated for each NAM line 
(Table S2, Table S3). In addition, Hsp allele frequency dis-
tributions for HEB-5 and the five NAM families are shown 
in Fig. S2. The average genotype and allele frequencies 
for each NAM family and HEB-5 were compared to the 
expected genotype frequencies (i.e., HvHv  =  62.5  %, 
HvHsp = 25.0 %, HspHsp = 12.5 %) and allele frequen-
cies (i.e., Hv =  75 %, Hsp =  25 %), respectively (Table 
S4, Table S5). No NAM family or HEB-5 deviated sig-
nificantly from the expected genotype or allele frequency 
across chromosomes. However, five significant devia-
tions (P < 0.05) of genotype frequency were observed on 
chromosomes for HEB-F08 (1H), HEB-F14 (5H), and 
HEB-F23 (1H, 6H, 7H), respectively. For HEB-F08 and 
HEB-F14, more than expected HspHsp genotypes and 
for HEB-F23 less than expected HspHsp genotypes were 
observed. These observations corresponded to a higher 
Hsp allele frequency of HEB-F14 on chromosome 5H 
and a lower Hsp allele frequency of HEB-F23 on chromo-
somes 1H, 6H, and 7H (Table S4, Table S5).

Genetic similarity (GS) and principal component (PCo) 
analysis

The genetic similarity (GS) estimation of HEB-5, based on 
simple matching, is shown in Table 3. GS between ‘Barke’ 
and the five HIDs ranged from 33.0 (HID-359) to 49.7 % 
(HID-099). Presumably, due to the backcrossing step, the 
GS estimates increased to an average of 77.9  % between 
‘Barke’ and HEB-5. Detailed GS estimates between NAM 
lines, Barke, and HIDs are given in Table S6. The highest 
individual GS estimate was observed between HID-099 

and the NAM line HEB-F08-021 (98.5 %). On the contrary, 
the lowest GS estimate was observed between HID-359 
and the NAM line HEB-F14-130 (26.9 %).

A principal component (PCo) analysis, based on the GS 
estimates between the NAM lines and the HEB-5 parents, 
was calculated to further illustrate the genetic relatedness 
across HEB-5 and within the NAM families. The first two 
principal components (PCos) calculated for NAM lines 
accounted for 67.5 and 5.2 % of the total variance. Figure 
S3 illustrates that most NAM lines cluster close to ‘Barke,’ 
whereas the Hsp donor parents were located more distantly. 
An exception is line HEB-F08-021, which is placed next to 
HID-099, confirming the GS results given before. The first 
two PCo coordinates were included in the mixed model 
analyses to account for the genetic relatedness between the 
NAM lines.

Table 3   Mean genetic similarity between ‘Barke’ and HIDs and 
NAM families

a  Comparison between ‘Barke’ and HIDs, and ‘Barke’ and the five 
NAM families, and the NAM population HEB-5, respectively. 
Genetic similarity was calculated based on simple matching analysis 
with 1,230 informative SNPs

Comparisona (%)

‘Barke’-HEB-5 77.9

‘Barke’-HID-069 44.8

‘Barke’-HEB-F06 78.1

‘Barke’-HID-099 49.7

‘Barke’-HEB-F08 80.4

‘Barke’-HID-140 44.7

‘Barke’-HEB-F14 76.4

‘Barke’-HID-144 44.7

‘Barke’-HEB-F15 78.7

‘Barke’-HID-359 33.0

‘Barke’-HEB-F23 81.1

Table 4   Leaf rust performance 
of HEB-5 parents, NAM lines 
and NAM families

a N ame of the HEB-5 parents, 
HEB-5 and of each NAM 
family, respectively
b N umber of leaf rust scoring 
observations
c  Average leaf rust score
d  Minimum and maximum leaf 
rust score, respectively
e  Standard deviation
f  Coefficient of 
variation = standard deviation/
mean

NAM family/populationa Hv/Hsp donors Nb Meanc Mind Maxd SDe CV (%)f

‘Barke’ Hv donor for all NAM families 37 4.1 3 7 1.5 36.1

HID-069 Hsp donor for HEB-F06 7 3.1 2 5 0.9 28.6

HEB-F06 286 2.9 1 6 1.0 33.0

HID-099 Hsp donor for HEB-F08 6 4.5 1 6 2.1 46.1

HEB-F08 325 4.5 1 7 1.6 35.9

HID-140 Hsp donor for HEB-F14 6 4.8 3 6 1.5 30.5

HEB-F14 279 4.9 1 8 1.6 32.2

HID-144 Hsp donor for HEB-F15 8 6.0 3 7 1.3 21.8

HEB-F15 266 5.2 1 8 1.9 35.7

HID-359 Hsp donor for HEB-F23 10 2.4 1 6 2.1 86.1

HEB-F23 237 4.3 1 8 1.6 36.5

HEB-5 1,393 4.3 1 8 1.7 40.0
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Leaf rust (LR) seedling resistance of HEB‑5 parents 
and NAM lines

In Table  4, the parameters mean, minimum, maximum, 
standard deviation (SD), and coefficient of variation (CV) 
specify the observed leaf rust seedling reaction among the 
tested barley lines. Scores are given for the HEB-5 par-
ents ‘Barke’ and the five HIDs, as well as for the HEB-5 
population and the five NAM families. Distributions of LR 
scores for HEB-5 and the five NAM families are illustrated 
in Fig. S4. The three exotic accessions HID-099, HID-140, 
and HID-144 showed higher LR scores, i.e., more suscep-
tibility, than cultivar ‘Barke’. On the contrary, lower LR 
scores were observed for HID-069 and, in particular, for 
HID-359. LR scores for three NAM families were in the 
same range as their corresponding HIDs. However, for two 
families, HEB-F15 and HEB-F23, scores differed markedly 
from their corresponding HIDs. HEB-F15 had lower LR 
scores than HID-144, and the LR scores observed for HEB-
F23 were higher than for HID-359. The mean LR score 
observed for HEB-5 was slightly higher than for ‘Barke’. 
Furthermore, Table 4 shows that in all five families low and 
high LR scores were observed. This results in CVs ranging 
from 21.8 % (HID-144) to 86.1 % (HID-359). On the other 
hand, the CV for HEB-F23 is in the same range as CVs cal-
culated for the five NAM families and HEB-5. Heritability 
(h2) of LR was estimated with 92.4° %.

Mapping of leaf rust (LR) QTLs in HEB‑5 and individual 
NAM families

Mixed model analyses were conducted across HEB-5 
(model 1) and separately within each NAM family (model 
2) in order to detect SNPs, which are significantly associ-
ated as QTLs with leaf rust (LR) seedling resistance.

Table 5 gives an overview of significant SNP × LR asso-
ciations. Only SNPs with the lowest P(FDR) value are shown 
if a QTL was detected for more than one SNP. All signifi-
cant associations are shown in Table S7. The P(FDR) values 
calculated for each SNP across the barley chromosomes are 
shown in Fig. S5. Five significant [P(FDR)  <  0.05] SNP 
associations were detected across HEB-5 and 22 significant 
associations within NAM family HEB-F23. The remain-
ing NAM families did not reveal any significant SNP × LR 
association. Associations detected with model 1 and model 2 
were summarized to four QTLs, for each of the two models 
(Table 5, Fig. S5, Fig. S6). QTLs were detected on all barley 
chromosomes except of chromosome 6H.

At six QTLs, the Hsp allele was associated with an 
increase of LR scores and in two cases with a reduction. 
The strongest increase in LR symptoms was detected on 
chromosome 2H and the strongest decrease on chromosome 
7H, both within HEB-F23. On chromosome 4H, two QTLs, 

one detected for HEB-5 and one detected within HEB-F23, 
partly overlapped at 61.56 cM (Table 5; Table S7; Fig. S6). 
For two HEB-5 QTLs, QLr.HEB-5-1H and QLr.HEB-
5-5H.b, the direction of the QTL effect was also visible 
within at least one additional NAM family; however, those 
effects were not significant (data not shown). For QLr.HEB-
5-5H.b, a MAF constraint prevented to test the significant 
SNP within individual NAM families (data not shown).

Discussion

We developed HEB-5, a first explorative multi-parental 
NAM population in barley in order to enhance the study 
of genetic diversity of wild barley. Originally, the cultivar 
‘Barke’ was crossed with five exotic H. vulgare ssp. spon-
taneum accessions, then backcrossed and subsequently 
selfed to achieve a BC1S1 population. So far, HEB-5 con-
sists of five NAM families and contains 295 NAM lines in 
total (Table 1).

The HEB-5 lines were subsequently genotyped with the 
BOPA1 SNP chip, and leaf rust seedling resistance was 
evaluated as a first example to study phenotypic diversity 
with a barley NAM population. Subsequently, a mixed 
model association study was conducted to map leaf rust 
resistance genes across HEB-5 and within single NAM 
families. Four QTLs across HEB-5 and four QTLs within 
NAM family F23 were detected to control LR resistance. 
We compared the detected QTLs with mapped LR resist-
ance (Rph) genes, QTLs, and Meta-QTLs, respectively, 
and found potentially corresponding regions for all QTLs 
except for QTLs on chromosome 1H. In the following, the 
development and the genetic constitution of HEB-5 and the 
location of LR seedling resistance QTLs will be discussed.

Population design of HEB‑5

Utilizing multi-parental populations for association map-
ping inevitably requires increasing the total population size 
compared to utilizing a single biparental population. Map-
ping populations resulting from biparental crosses usu-
ally comprise less than 200 lines in barley. For instance, the 
Oregon Wolfe Barley (OWB) population consists of 82 DH 
lines (Chutimanitsakun et  al. 2011), a size potentially lead-
ing to underestimation of QTL number and overestima-
tion of QTL effects (Vales et al. 2005). These authors tested 
different population sizes and concluded that large QTL 
effects are detected in small populations, but small effects 
can only be detected with increasing population size. Beavis 
(1998) regarded even 200 individuals as too few. Wang et al. 
(2012) concluded that for genome-wide association studies 
(GWAS) in a barley core collection, more than 384 individu-
als are necessary to detect QTLs consistently. However, for 
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multi-parental barley populations, the definition of the opti-
mal population size to detect most of the QTLs has not been 
estimated so far. It is obvious that one has to keep time and 
costs for phenotyping and genotyping in a reasonable relation 
to the number of QTLs detected. Nevertheless, Stich (2009) 
demonstrated through computer simulation studies that for 
maize and Arabidopsis, diallel and factorial designs had 
greater power to detect QTLs than recombinant inbred line 
(RIL) designs with 25 and 19 donors, respectively. However, 
we are confident that under practical considerations, the lat-
ter multi-donor RIL design may be more advantageous due to 
the ease of population development and the ease of compar-
ing donor allele effects against a single recipient parent.

Recently, a maize NAM population and a sorghum NAM 
population were reported. The genetic architecture (number 
of NAM families and NAM lines) is different compared to 
HEB-5 (five NAM families, 295 NAM lines). Buckler et al. 
(2009) investigated a maize NAM population consisting of 
5,000 NAM lines (25 NAM families with 200 lines per fam-
ily) in regard to three flowering time (FT) traits. Across the 
maize NAM population, the number of lines provided suf-
ficient power to detect QTLs. Additionally, FT QTLs were 
detected for NAM subsets across at least three to four NAM 
families. However, no FT QTL was detected within single 
NAM families. Also, for the two maize foliar diseases, south-
ern leaf blight and northern leaf blight resistance QTLs were 
detected across the maize NAM population and within each 
NAM family separately (Kump et  al. 2011; Poland et  al. 
2011). Also, 23 maize NAM families were analyzed in regard 
to starch, protein, and oil content. QTLs within individual 
NAM families were detected for at least 22 NAM families per 
trait (Cook et al. 2012). Resistance QTLs against several corn 
borers were evaluated for a subset of 281 maize NAM lines 
(eight NAM families). However, QTL stability was detected 
only across two NAM families (Butrón et al. 2010) indicating 
that the donor accessions of the NAM population may con-
tribute different effective resistance QTL alleles. The maize 
data also indicate that in most maize NAM studies, finding 
QTLs across families is improved compared to finding QTLs 
within individual NAM families.

In sorghum, Jordan et al. (2011) developed a NAM pop-
ulation, consisting of 56 NAM families with 30–90 lines 
per family. The sorghum population structure may reduce 
the chance to locate QTLs in individual NAM families in 
favor of increasing the chance to locate QTLs across the 
NAM population due to the increased number of donor 
accessions used. A subsample of the sorghum NAM popu-
lation, consisting of seven families with 31–59 NAM lines 
per family, was used to locate QTLs for plant height, FT 
and grain yield (Jordan et al. 2011), and stay-green effects 
(Mace et  al. 2012). In these cases, the population size of 
339 lines was sufficient to detect effects of exotic donor 
alleles in multiple individuals (Jordan et al. 2011).

From NAM reports in maize and sorghum, it is notice-
able that the potential to detect QTLs strongly depends on 
the heritability of the trait investigated. Hence, the opti-
mal size and composition of a NAM population should be 
adjusted to the particular target trait under study. We con-
sider the explorative barley NAM population HEB-5 as 
comparatively small, in particular, in regard to the number 
of donor accessions included. Although the current archi-
tecture of HEB-5 already proved to be sufficient to detect 
leaf rust resistance genes (see below), increasing the num-
ber of wild barley donor accessions may lead to a further 
enhancement of the power to detect QTLs. This may be 
true because of the increased population size and because 
of the increased genetic diversity which can be interro-
gated, if the donor accessions are carefully selected. We, 
thus, consider HEB-5 only as an explorative step toward 
the development of a full barley NAM population.

SNP genotyping of HEB‑5

The high-density genome coverage of 1.0  cM per SNP 
(Table S1) in HEB-5 is similar to genome coverages 
described for other populations (e.g., Schmalenbach et  al. 
2011). A number of SNPs were excluded due to monomor-
phic behavior or due to a minor allele frequency threshold 
of MAF <0.05. We plan to close the present genome gaps 
(Table S1) and to increase the SNP resolution by geno-
typing HEB-5 lines with the Infinium iSELECT 9  k bar-
ley SNP chip (Comadran et  al. 2012) and, eventually, by 
exome capture sequencing (Mascher et al. 2013).

For population HEB-5, χ2 p values were calculated to test 
whether genotype or allele frequencies across the genome 
and per chromosomes deviated from the expected segrega-
tion in BC1S1. No significant deviation was detected across 
population HEB-5. These finding corroborates that during 
the development of HEB-5, no obvious selection, neither 
naturally nor unintentionally, may have been imposed on the 
NAM population. The chances to study genetic diversity in 
HEB-5, resulting in the location of genetic effects are, thus, 
ideal. Nevertheless, genotype frequencies and allele frequen-
cies of particular chromosomes deviated from the expectation 
in NAM families F08, F14, and F23 (Table S4, Table S5).

Genetic similarity (GS) and principal component (PCo) 
analysis

GS between parents (‘Barke,’ HIDs) and between NAM 
lines were estimated. GS scores between ‘Barke’ and the 
HEB-5 donors varied between 33.0 % and 49.7 % (Table 
S6). In contrast, GS between the maize elite parent and 
the ‘exotic’ donors (landraces) in the maize NAM popu-
lation was estimated much higher with approximately 
80.0 % (Liu et al. 2003). Unfortunately, no GS scores were 
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published for the sorghum NAM population (Mace et  al. 
2008; Jordan et al. 2011). We assume that the low level of 
genetic similarity between ‘Barke’ and the HEB-5 donors 
increases the chances to find DNA polymorphisms and, 
more important, to detect QTLs.

The average GS between ‘Barke’ and HEB-5 lines was 
77.9  % (Table  3). This finding indicates the lack of sig-
nificant natural or unintentional human selection during 
development of the NAM population. In addition, one out-
lier was identified based on calculating GS estimates. The 
highest GS was detected between donor accession HID-
099 and HEB-F08-021 (GS = 98.6 %, Fig S2, Table S6). 
We assume that this genotype may be a variant of HID-099. 
The line was, thus, excluded from further analysis.

It is known that GS estimates can suffer from ascer-
tainment bias, which may occur if genotype data are not 
obtained from a random sample of SNPs in the population 
of interest or, if only a small number of genotypes were used 
for SNP discovery (Heslot et al. 2013). BOPA1 SNPs were 
selected from comparing elite barley sequence variations, 
which potentially lead to an overestimation of GS between 
exotic donors (Russell et al. 2011). Ascertainment bias was 
demonstrated for BOPA1 while comparing elite and exotic 
barley (Moragues et  al. 2010). Thus, the true GS between 
the five exotic donors, ‘Barke,’ and the HEB-5 individuals 
might be slightly lower than estimated with BOPA1. SNPs, 
which are derived from genotyping-by-sequencing (GBS), 
are expected to be uniformly distributed across the genome 
(Davey et  al. 2011). They were, thus, suggested to reduce 
ascertainment bias in biparental populations (Poland et  al. 
2012; Poland and Rife 2012; Heslot et al. 2013). For HEB-
5, we also suggest to apply exome capture sequence analy-
sis and subsequent haplotype calling (Mascher et al. 2013) 
to reduce possible ascertainment bias effects.

Detection of QTLs for seedling leaf rust resistance 
and comparison with already located R genes and QTLs

We scored seedling leaf rust resistance to demonstrate 
the power to detect QTLs across the multi-parental bar-
ley NAM population HEB-5 and within individual NAM 
families. Variation in LR scores was found among HEB-5 
parents as well as within HEB-5 and the five NAM fami-
lies. LR scores were observed in a medium range from 2.4 
to 6.0 (Table  4; Fig. S4). According to McMullen et  al. 
(2009), low resistance presumes that minor QTLs will be 
detected by association mapping. LR resistance QTLs were 
detected on all barley chromosomes except of 6H. Four 
QTLs were detected across HEB-5 and four QTLs within 
one NAM family—HEB-F23. However, only one QTL was 
common between HEB-5 and HEB-F23. In the following, 
the QTLs are discussed and the chromosomal position of 
the new QTLs is compared with QTLs and R genes already 

detected in previous experiments. Table  5 shows known 
Meta-QTLs (MQTLs), QTLs, and R genes if located in the 
same chromosomal region as QTLs detected in the present 
study.

Detection of QTLs often depends on the pathogen iso-
late and the mapping population used (González et  al. 
2012). Two QTLs were mapped to centromeric regions on 
the chromosomes 2H and 4H (Fig S6). We presume that 
these regions are in accordance with specific resistance hot 
spot regions reported by Schweizer and Stein (2011). The 
exact centromeric location of the MQTL map published 
by Schweizer and Stein (2011) is unknown; however, we 
assume that QLr.HEB-F23-2H lies in the hot spot region 
MQTL4, where resistances against Blumeria spp. and P. 
hordei are mapped.

Regarding chromosome 4H, two QTLs were detected 
across HEB-5 and within HEB-F23, respectively, which 
partly overlap (Table  5; Fig. S6; Table S7). These QTLs 
are, thus, potentially identical, demonstrating that allelic 
resistance effects present in HEB-5 can be traced back to 
the original donor accession used to develop the NAM fam-
ily. The centromeric region of chromosome 4H is again a 
hot spot for different plant resistance genes (cf. Schweizer 
and Stein 2011). The leaf rust resistance QTL Rphq19 
(Marcel et al. 2007a) was confirmed in the MQTL study of 
Schweizer and Stein (2011) and mapped to the QTL region 
MQTL9. In that genomic region, resistances against other 
fungi, for instance Blumeria graminis, were located. We 
assume that the QTLs detected in the present study corre-
spond to the hot spot region MQTL9.

Three further QTLs (QLr.HEB-F23-3H, QLr.HEB-5-5H, 
QLr.HEB-F23-7H) were mapped to QTL regions identified 
as hot spot regions (Schweizer and Stein 2011), and one 
QTL (QLr.HEB-5-5H.b) was mapped to the same region, 
where resistance was exclusively detected against P. hordei 
(Marcel et  al. 2007a; Schweizer and Stein 2011). Table  5 
lists the potentially corresponding MQTL regions on the 
long arms of chromosomes 3H, 5H, and 7H and, addition-
ally, the QTL region on the short arm of chromosome 5H.

Three of four QTLs detected across HEB-5 did not over-
lap with QTLs detected within individual NAM families. 
However, nonsignificant associations within two individ-
ual NAM families were found. These effects had the same 
direction within at least one NAM family. Concerning the 
third QTL, comparison of the direction of the effect was not 
possible, because SNPs representing the specific locus were 
excluded within individual families (data not shown). These 
results indicate that although some LR effects may already 
be visible in individual NAM families, they only become 
significant if analyzed across the total NAM population.

The QTLs cited so far were detected with various iso-
lates. However, some previously mapped QTLs were 
detected with the LR isolate ‘I-80,’ which was also used in 
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our study. For instance, two QTLs were detected on chro-
mosome 2H, where Hsp alleles were associated with LR 
resistance (Backes et al. 2003; Kopahnke et al. 2004). Tak-
ing into account that the QTL detected on chromosome 2H 
in Backes et al. (2003) was mapped to the telomeric region, 
we assume that this QTL is different from QLr.HEB-
F23-2H, which was mapped to the centromeric region in 
the present study (Fig. S6). Regarding the QTL detected by 
Kopahnke et al. (2004), a correspondence may be possible. 
However, since the markers used in both studies are differ-
ent (SSRs versus SNPs), a remapping of informative mark-
ers may be necessary to come to a final conclusion.

According to González et  al. (2012), Rph genes and 
QTLs seem to rely on different types of genes due to map 
positions. However, some Rph genes that are potentially 
detectable with ‘I-80’ were mapped to the same chro-
mosome arms where we detected QTLs (Table  5). For 
instance, Rph14 (Golegaonkar et al. 2009a), Rph15 (Weera-
sena et al. 2004), Rph16 (Ivandic et al. 1998), and Rph17 
(Pickering et al. 1998) are mapped to the short arm of chro-
mosome 2H. Thus, an overlap with the detected QTLs may 
be possible. Rph19, which was mapped to chromosome 
7HL (Park and Karakousis 2002), may overlap with the 
QTL we detected on 7HL. However, fine mapping of the 
cited Rph genes is needed in HEB-5 to confirm this hypoth-
esis. Also, it remains open if the QTLs detected in HEB-5 
and the cited QTLs represent the same resistance alleles. To 
test this hypothesis, a gene postulation assay may be con-
ducted, using a battery of contrasting LR isolates, to test 
whether the resistance QTLs in HEB-5 represent new LR 
resistance alleles or not (Dreiseitl and Steffenson 2000).

Conclusion

The explorative BC1S1 population HEB-5 was established 
as a first step toward the final development of a 26-paren-
tal barley NAM population. In total, eight QTLs controlling 
suppression of leaf rust occurrence were recorded studying 
LR seedling resistance in HEB-5. Our results confirm that 
the NAM approach allows detecting new wild barley QTLs 
for LR, demonstrating its potential value to utilize wild bar-
ley diversity in barley genetics. One QTL, QLr.HEB-5-1H, 
may be of particular interest. The Hsp allele at this locus 
was associated with a 33.3° % reduction in LR. The QTL 
may be further explored and utilized in barley-resistance 
breeding.

The barley NAM population is still under develop-
ment. In the future, HEB-5 will be further expanded in 
regard to number of NAM families and number of NAM 
lines. The final barley NAM population HEB-25 will com-
prise 25 NAM families and approximately 1,500 NAM 
lines in BC1S3 generation. HEB-25 will be genetically 

characterized with the Infinium iSELECT 9 k barley chip, 
covering 7,864 barley SNPs (Comadran et al. 2012). Even-
tually, we plan to further increase the marker resolution by 
exome capture sequence analysis (Mascher et al. 2013). We 
assume that the final HEB population will provide a higher 
power to detect effects of exotic QTL alleles. We plan to 
phenotypically characterize the final HEB-25 population in 
regard to morphological traits, agronomic traits, and disease 
resistances against various barley pathogens. Following this 
strategy, new exotic barley alleles, potentially useful, may 
be detected and utilized in barley breeding with increased 
efficiency. In addition, HEB-25 may be very useful to sup-
port forward genetics studies since its size and the number 
of generations used to develop the population will foster 
the identification of informative recombination events in a 
target region, separating linked genes from the target gene 
that needs to be identified by map-based cloning.
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